Skip to content Skip to navigation

Colloquium: Lea Hildebrandt Ruiz (UT Austin)

January 29, 2018 -
4:00pm to 5:00pm
Shriram Room 104

Lea Hildebrandt Ruiz
Assistant Professor
McKetta Department of Chemical Engineering
The University of Texas at Austin

 

 

The University of Texas at Austin

 

Title:

The role of chlorine in tropospheric chemistry

Abstract:

More than 4 million people die prematurely every year by breathing outdoor particulate matter (PM) and ozone, both secondary pollutants formed from tropospheric oxidation chemistry. PM and ozone also play key and uncertain roles in Earth's radiative balance. In order to protect human health and reduce levels of these pollutants, their mechanisms of formation in the atmosphere need to be understood. Hydroxyl (OH) and ozone (O3) are the most abundant tropospheric oxidants, but chlorine atoms are much more reactive and can oxidize functional groups or whole molecules that are resistant to the weaker common oxidants.

Tropospheric chlorine chemistry has not received as much attention because its importance was believed to be limited to coastal areas. However, recent ambient measurements have detected high concentrations of reactive chlorine species in inland and mid-continental regions, suggesting that chlorine chemistry is also important in continental regions. Ambient measurements conducted by our group in New Delhi, India periodically show extremely high concentrations of particulate chlorine, implying an important role of chlorine chemistry in this highly polluted megacity. In addition, due to its use as a disinfectant, chlorine chemistry can be important in the indoor environment.

 

Laboratory experiments conducted in our group show efficient formation of PM from chlorine-initiated oxidation of different hydrocarbon precursors. Using measurements from a high resolution time of flight chemical ionization mass spectrometer, we are able to track several generations of oxidation chemistry leading to the formation of organic particulate matter, as well as explore the molecular composition of PM. Chlorine-initiated reactions generally form PM at a higher yield than OH-initiated reactions, and the PM formed is often more oxygenated. Organochlorides form from all precursors investigated, even when the initial oxidation occurs via hydrogen-abstraction. Overall, our results suggest important impacts of chlorine chemistry on atmospheric composition which are currently not appropriately represented in air-quality models used to support the development of environmental policies. 

 

Bio:

Dr. Lea Hildebrandt Ruiz is an Assistant Professor in the McKetta Department of Chemical Engineering and at the Center for Energy and Environmental Resources at the University of Texas at Austin. Her research interests lie in atmospheric chemistry and the effects of physicochemical processing of pollutants on human exposure and health. Dr. Hildebrandt Ruiz has over a decade of experience in using state-of-the-science mass spectrometric instrumentation to conduct policy-relevant and fundamental chemical research, and she has participated in the development and refinement of mass spectrometric techniques. She has lead several field campaigns in indoor and outdoor environments and projects focused on laboratory chamber experiments. The quality of Dr. Hildebrandt Ruiz’s research has been recognized by research grants from private, federal and state organizations including the Welch Foundation and the U.S. National Science Foundation. Dr. Hildebrandt Ruiz received a B.S. with Honors in Chemical Engineering from the California Institute of Technology (Environmental Track) and a Ph.D. in the Department of Chemical Engineering and the Department of Engineering and Public Policy from Carnegie Mellon University.  

 

Education

2006    B.S., with Honors, Department of Chemical Engineering (Environmental Track), 
              California Institute of Technology    

2011    Ph.D., Department of Chemical Engineering and Department of Engineering and Public
              Policy, Carnegie Mellon University

This event belongs to the following series